Modulation of Short-Latency Afferent Inhibition Depends on Digit and Task-Relevance

نویسندگان

  • Michael J. Asmussen
  • Christopher M. Zapallow
  • Mark F. Jacobs
  • Kevin G. H. Lee
  • Philemon Tsang
  • Aimee J. Nelson
چکیده

Short-latency afferent inhibition (SAI) occurs when a single transcranial magnetic stimulation (TMS) pulse delivered over the primary motor cortex is preceded by peripheral electrical nerve stimulation at a short inter-stimulus interval (∼ 20-28 ms). SAI has been extensively examined at rest, but few studies have examined how this circuit functions in the context of performing a motor task and if this circuit may contribute to surround inhibition. The present study investigated SAI in a muscle involved versus uninvolved in a motor task and specifically during three pre-movement phases; two movement preparation phases between a "warning" and "go" cue and one movement initiation phase between a "go" cue and EMG onset. SAI was tested in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles in twelve individuals. In a second experiment, the origin of SAI modulation was investigated by measuring H-reflex amplitudes from FDI and ADM during the motor task. The data indicate that changes in SAI occurred predominantly in the movement initiation phase during which SAI modulation depended on the specific digit involved. Specifically, the greatest reduction in SAI occurred when FDI was involved in the task. In contrast, these effects were not present in ADM. Changes in SAI were primarily mediated via supraspinal mechanisms during movement preparation, while both supraspinal and spinal mechanisms contributed to SAI reduction during movement initiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P300 Component Modulation During a Go/Nogo Task in Healthy Children

ABSTRACT Introduction: Several differences in the P300 component are observed when responses must be executed or inhibited in the Go/Nogo task. However, few studies were established by using well-controlled task with respect to the preparatory processing and stimulus probability. In the present study, we examined the peak amplitude and latency of Go-P300 (P300 evoked by visual Go stimuli) and N...

متن کامل

The level of cortical afferent inhibition in acute stroke correlates with long-term functional recovery in humans.

BACKGROUND AND PURPOSE Using transcranial magnetic stimulation, we investigated short-interval intracortical inhibition and short-latency afferent inhibition in acute ischemic stroke. METHODS We evaluated short-interval intracortical inhibition and short-latency afferent inhibition in the affected hemisphere and unaffected hemisphere in 16 patients and correlated electrophysiological paramete...

متن کامل

Short-Latency Afferent Inhibition Modulation during Finger Movement

When somatosensory input via electrical stimulation of a peripheral nerve precedes a transcranial magnetic stimulation (TMS) pulse over the primary motor cortex (M1) the corticospinal output is substantially reduced, a phenomenon known as short-latency afferent inhibition (SAI). The present study investigated SAI during rest and during pre-movement, phasic and tonic components of movement. Part...

متن کامل

Different modulation of short‐ and long‐latency interhemispheric inhibition from active to resting primary motor cortex during a fine‐motor manipulation task

Performing a complex unimanual motor task markedly increases activation not only in the hemisphere contralateral to the task-performing hand but also in the ipsilateral hemisphere. Transcranial magnetic stimulation studies showed increased motor evoked potential amplitude recorded in resting hand muscles contralateral to the task-performing hand during a unimanual motor task, and transcallosal ...

متن کامل

Corticocortical inhibition of peripheral inputs within primary somatosensory cortex: the role of GABA(A) and GABA(B) receptors.

A conditioning-test pulse paradigm was used in combination with microiontophoresis to examine the corticocortical modulation of somatosensory processing. Single-cell recordings were made in the glabrous digit representation of primary somatosensory (S1) cortex in anesthetized raccoons. Test stimulation of the periphery (the on-focus digit) was preceded by conditioning stimulation of the cortica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014